
DINO-Tracker: Taming DINO for Self-Supervised
Point Tracking in a Single Video

Narek Tumanyan∗, Assaf Singer∗, Shai Bagon, Tali Dekel

Weizmann Institute of Science
*Indicates equal contribution.

Project webpage: dino-tracker.github.io

Raw features Refined features

(a) Tracking results (b) Feature refinement

Motion Trajectories

Fig. 1: DINO-Tracker provides long-range dense trajectories, past repeating occlu-
sions and during challenging object deformations (a); For visualization purposes, the
trajectories are shown for sampled points, yet our method tracks any point. Our test-
time training framework leverages a pre-trained DINO-ViT model, and optimizes its
internal features for tracking in a single video. (b) Visualization of trajectory features
using t-SNE: We reduce the dimensionality of foreground features extracted from all
frames to 3D using t-SNE, for both raw DINO features and our optimized ones; Fea-
tures sampled along ground-truth trajectories are marked in color, where each color
indicates a different trajectory. Our refined features exhibit tight “trajectory-clusters”,
allowing our method to associate matching points across distant frames and occlusion.

Abstract. We present DINO-Tracker – a new framework for long-term
dense tracking in video. The pillar of our approach is combining test-time
training on a single video, with the powerful localized semantic features
learned by a pre-trained DINO-ViT model. Specifically, our framework si-
multaneously adopts DINO’s features to fit to the motion observations of
the test video, while training a tracker that directly leverages the refined
features. The entire framework is trained end-to-end using a combination
of self-supervised losses, and regularization that allows us to retain and
benefit from DINO’s semantic prior. Extensive evaluation demonstrates
that our method achieves state-of-the-art results on known benchmarks.
DINO-tracker significantly outperforms self-supervised methods and is
competitive with state-of-the-art supervised trackers, while outperform-
ing them in challenging cases of tracking under long-term occlusions.

https://dino-tracker.github.io

2 N. Tumanyan, A. Singer et al.

1 Introduction

Establishing dense point correspondences in video has seen tremendous progress
in recent years. In the case of short-term dense motion estimation, i.e., optical
flow estimation, the research community has been primarily focused on super-
vised learning – designing powerful feedforward models that are trained on var-
ious synthetic datasets, using ground truth accurate supervision [57]. Recently,
this trend has been expanded to long-range point tracking in video. With the rise
of new architectures (e.g., Transformers [14]) and new synthetic datasets that
provide long-term trajectories supervision [12, 63], various supervised trackers
have been developed, demonstrating impressive results [12,13,26]. Nevertheless,
tracking every point in a video across its entire temporal duration poses funda-
mental challenges to this prevalent supervised approach. First, synthetic datasets
for point tracking, which often consist of moving objects in unrealistic configu-
rations, are limited in their diversity and scale, relative to the vast distribution
of motion and objects in natural videos. In addition, existing models are still re-
stricted in their ability to aggregate information across the entire spatiotemporal
extent of a video – a pivotal component in tracking especially under long-term
occlusions (e.g., correctly matching a point before it is occluded and after it is
revealed).

Aiming to tackle the above challenges, Omnimotion [51] recently proposed to
take the opposite direction through a test-time optimization framework that lifts
tracking into 3D, and leverages pre-computed optical flow and video reconstruc-
tion as supervision. By optimizing a tracker on a given test video, this approach
essentially solves for the motion of all video pixels at once. Nevertheless, a main
drawback of Omnimotion is that it heavily relies on pre-computed optical flow
and the information available in a single video – it does not benefit from external
knowledge and priors about the visual world.

In this paper, we propose to close the gap between test-time training and
learning from extensive data by combining the best of both worlds: a test-time
optimization framework that is tailored to a specific video, coupled with the
powerful feature representation learned by an external image model trained
on broad unlabeled images. Specifically, inspired from the tremendous recent
progress in self-supervised learning, our framework leverages a pre-trained DI-
NOv2 model [38] – a Vision Transformer distilled using a large collection of nat-
ural images. DINO’s features have been shown to capture fine-grained semantic
information and has been used for various visual tasks such as segmentation
and semantic correspondences (e.g., [2, 35, 44]). Our work is the first to con-
sider these features for dense tracking. We show that using raw DINO feature
matching can serve as a strong baseline for tracking, yet the features are not
discriminative enough to support sub-pixel accurate tracking on their own, as
can be seen in the t-SNE visualization of Fig. 1(b). Our framework simultane-
ously refines DINO’s features to fit to the motion observations of the test video,
while training a tracker that directly leverages the refined features. To this end,
we formulate a new objective function that goes beyond optical flow supervision

Taming DINO for Self-Supervised Point Tracking in a Single Video 3

by fostering robust semantic feature-level correspondences derived from DINO
within our refined feature space.

We extensively evaluate our framework across established benchmarks and
demonstrate its superiority in scenarios requiring semantic understanding, deal-
ing with appearance ambiguity, and handling long occlusions. Our tracker achieves
state-of-the-art performance compared to previous self-supervised methods, and
reveals a significant boost in tracking through long occlusion, compared to state-
of-the-art supervised trackers.

To summarize, our contributions are as follows:
– We are the first method to harness pre-trained DINO features for point-

tracking.
– We present the first method that combines test-time training with external

priors for tracking.
– We achieve a notable performance boost w.r.t. prior methods in tracking

through long-term occlusions.

2 Related Work

Optical flow. Classical optical flow optimization methods are based on color
constancy and motion smoothness (e.g., [5, 6, 20, 31]). Later, these hand-crafted
priors have been replaced by data-driven approaches (e.g., [15, 22, 24, 45, 47, 54,
55]), where modern deep learning-based optical flow methods typically take a
supervised learning approach by leveraging synthetic training data containing
ground truth optical flow labels. While optical-flow estimation has seen great
progress, establishing accurate dense correspondences between nearby frames,
extending it to long-term tracking (e.g., by chaining pairwise correspondences)
is hampered by occlusions and prone to error accumulation. In our method, we
use RAFT [47] to derive short-term motion supervision for our model.

Learning correspondences from videos While optical flow focuses on dense matches
between consecutive frames, other methods were developed for matching corre-
sponding points across distant frames. Classical methods used hand-crafted fea-
tures (e.g, [29,30]), while more recently, these correspondences were learned in a
weakly or self-supervised manner [3, 7, 28, 40, 50, 52, 56]. Some of these methods
exploit video data to learn correspondences, using various cues such as cycle-
consistency in time [25,53,64]. Nevertheless, at test time, these models operates
on a pair of frames, and do not consider wider temporal context, which makes
them unsuitable for dense point tracking.

Feedforward models for dense tracking. Recently, there has been notable progress
in developing feedforward neural network-based models for dense tracking (e.g.,
[12, 13, 19, 26, 36, 63]). This advancement has been facilitated by the rise of new
architectures and synthetic datasets that provide ground truth trajectory super-
vision [12,63]. TAP-Net [12] estimates the position of a query point by computing
a cost volume for each target frame independently, followed by regressing the

4 N. Tumanyan, A. Singer et al.

cost volume to a 2D coordinate and a visibility score. PIPs [19] revisits classical
particle-based representation [43] by designing an MLP-based tracker that pre-
dicts tracklets in 8-frame window. To predict long-range tracks, PIPs is applied
in a sliding-window fashion – an approach that is prone to drifting errors and
cannot handle long-term occlusions. Aiming to extend the temporal field of view,
PIPs++ [63] replaces the MLP-Mixer with a fully-convolutional 1D architecture.
However, trajectories of different points are still predicted independently. Co-
Tracker [26] aims to tackle this issue through a new Transformer-based archi-
tecture that jointly tracks multiple query points, and demonstrated impressive
results on several benchmarks such as TAP-Vid-DAVIS. However, their temporal
field of view is still limited due to the expensive attention modules. TAPIR [13]
combines TAP-Net and PIPs design in a two-stage framework: first, tracks are
initialized using per-frame cost volume estimation, which are then refined sim-
ilarly to [19]. Our work takes a different route in two fundamental ways: (i) all
these methods are trained from scratch in a supervised manner. In contrast,
we aim to leverage the rich and powerful internal representation learned by an
external self-supervised image model, (ii) due to computational and memory re-
quirements, these models are still limited in either their temporal or spatial field
of view. We aggregate information across all video pixels via the trained weights
of the tracker which is optimized to a specific video.

Recently, [46] proposed a self-supervised scheme for improving pre-trained
supervised motion estimation models, by self-distilling cycle-consistent predic-
tions. However, their method relies solely on the pre-trained model and does not
consider any external priors, which is the focus of our approach.

Optimization-based tracking. The task of long-term tracking dates back to clas-
sical works that optimize motion globally over a video (e.g., [9,41,43,62]). How-
ever, these methods are restricted to sparse or semi-dense tracking, and struggle
to track under occlusions. Recently, Omnimotion [51] proposed a neural-based
framework that performs tracking by learning a bijective mapping between each
point in the video and a canonical quasi-3D space. Their model is optimized
per-video in a self-supervised manner, using pre-computed optical flow and video
reconstruction as supervision. Similarly, our method takes a test-time training
approach, yet fundamentally differs from [51] in utilizing an external visual prior.
As a result, DINO-Tracker outperforms Omnimotion in scenarios where reliable
optical flow is lacking, such as tracking past long occlusions. Moreover, our op-
timization process is more time-efficient as we only refine pre-trained features
with a lightweight architecture.

DINO-ViT Features as local semantic descriptors. DINO [7] features were shown
to effectively serve as dense and localized visual descriptors [2] for many tasks
such as finding semantic correspondences [2,34,44,58,59], performing segmenta-
tion and part-segmentation [1,2,18,35], transferring appearance in a semantically
aware manner [48,49], and aligning a set of semantically related images – estab-
lishing dense correspondences between them [17,37]. Recently, Time-tuning [42]
took DINO features to the temporal domain to improve the consistency of video

Taming DINO for Self-Supervised Point Tracking in a Single Video 5

segmentation. Our work is the first to harness the semantic prior of DINO for
the task of dense, sub-pixel, long-range tracking in video.

3 Method

Given an input video {It}Tt=1, our goal is to train a tracker Π that takes a query
point xq as input and outputs a set of position estimates {x̂t}Tt=1. As illustrated
in Fig. 2, our framework follows the prevailing approach of extracting features,
for both the query xq and a target frame It, and estimating the final position
x̂t based on the maximal location in the cost volume. The core of our method
is harnessing a pre-trained DINOv2-ViT model [38] in our feature extraction.
DINO’s pre-trained features provide our framework with an initial semantic and
localized representation, yet, lacks temporal consistency and fine-grained local-
ization required for accurate long-term tracking. We thus train Delta-DINO – a
feature extractor that predicts a residual to the pre-trained DINO features.

Our goal is to refine the features such that they can act as “trajectory em-
beddings”, i.e., features sampled along a trajectory should converge to a unique
representation, while preserving the original DINO prior. To this end, we formu-
late a new objective function that is used to train our tracker in a self-supervised
manner, on a single input video. Our sources of supervision are: (i) pre-computed
optical flow which provides us with pseudo ground truth short-term pixel-level
correspondences, (ii) semantic feature-level correspondences extracted from raw
DINO features, which are distilled into our refined feature space through a con-
trastive objective, and (iii) self-distillation losses aiming to sharpen the corre-
lation between reliable correspondences distilled from our refined feature space.
We next describe our tracking framework and supervision in detail.

3.1 DINO-Tracker

The core component of our framework is the Delta-DINO model, which predicts
the residuals to frozen DINO features for frame I (Fig. 2). That is, our refined
features Φ(I) ∈ RH′×W ′×C are given by:

Φ(I) = ΦDINO(I) +Φ∆(I) (1)

where ΦDINO(I) are the pre-trained DINO features, and Φ∆(I) are the predicted
residual features. We use a CNN-based model for Delta-DINO, to benefit from
its inductive bias, i.e., encoding similar RGB patches across frames into similar
feature representation. In addition, predicting a residual rather than directly
fine-tuning DINO allows us to better retain its prior [60]. To stabilize our fine-
tuning process, we zero-initialize our refiner.

Given a query point xq in Ik, we bilinearly-sample its feature: φφφq = Φ(Ik)[q],
where q is the rescaled coordinate of xq in the feature map. We then compute
the cost volume between φφφq and a target feature map Φt = Φ(It) as follows:

S(p) = cos-sim(φφφq,Φ
t(p)) where cos-sim(a,b) =

aT · b
||a||2 · ||b||2

6 N. Tumanyan, A. Singer et al.

CNN-refiner
Soft-

Argmax

DINOv2

Delta-DINO

Feature Extractor

trained
frozen
cosine-
similarity

bilinear
sampling at

Fig. 2: DINO-Tracker at inference: Features are extracted from a reference frame Ik,
and a target frame It. Our feature extractor consists of a fixed pre-trained DINOv2
model, and our CNN Delta-DINO model, which predicts a residual to DINO’s features.
To track a query point xq ∈ Ik, we compute the cost volume between its sampled feature
φφφq, and the target feature map Φ(It). The resulting heatmap S is refined, and the final
tracked position x̂t is estimated based on points in the vicinity of the maximal location.

Following [12], we input S to a small CNN-refiner network followed by a spatial
softmax, resulting in the final heatmap H. The final coordinate x̂t is computed
by considering the points in the vicinity of the maximal location pmax ∈ H and
computing their weighted sum:

x̂t =

∑
p∈Ω H(p) · xp∑

p∈Ω H(p)
(2)

where Ω = {p : ||xp − xpmax
||2 ≤ R}. Thus, the final output of our tracker is

Π(xq, t) = x̂t, and the track of xq is Tq =
{
x̂t : x̂t = Π(xq, t), t = 1 . . . T

}
.

3.2 Self-Supervision

We train DINO-Tracker to match points along trajectories with supervising sig-
nals automatically extracted from the test video itself using RAFT optical flow
and distilled feature correspondences.

Optical flow provides accurate, sub-pixel displacement information between con-
secutive frames. We extract short-term tracks by chaining these displacements
over time. A point xi from frame i is matched to xj at frame j if the optical
flow tracklet between them is cycle-consistent. At preprocessing, we compute the
set of all optical flow correspondences Ωflow =

{
(xi,xj) cycle-consistent

}
, which

provide high-quality supervision for short tracklets. However, they are not suit-
able for providing long-range supervision due to error accumulation (i.e. drifting)
and occlusions. Further implementation details can be found in Appendix A.1.

Feature correspondences. are used to supplement our training data. We extract
feature correspondences from DINO and leverage them for additional super-
vision. Specifically, we extract reliable matches between pairs of feature maps

Taming DINO for Self-Supervised Point Tracking in a Single Video 7

ΦDINO(I
i),ΦDINO(I

j) by detecting “best-buddy pairs”, i.e., mutual nearest neigh-
bors [11]. Formally, a pair of points {pi,pj} are best-buddies (bb) if:

NN(φφφi
DINO,ΦDINO(I

j)) = φφφj
DINO ∧NN(φφφj

DINO,ΦDINO(I
i)) = φφφi

DINO (3)

where NN(φφφ,Φ) is the nearest-neighbor of φφφ in feature map Φ. At preprocess-
ing, we compute the set of all DINO best-buddies Ωdino-bb =

{(
pi,pj

)
DINO bb

}
.

Additionally, during training, our refined features improve their representa-
tion and give rise to new reliable correspondences. We detect new best bud-
dies (Eq. 3) using the refined features, φφφi,φφφj . The set of refined best buddies,
Ωrfn-bb =

{(
pi,pj

)
refined bb

}
, is constantly updated during training.

Importantly, these two sources of correspondences are complementary: while
optical flow provides accurate sub-pixel matches for near-by frames, features’
best-buddies are extracted on a coarse spatial grid but provide long-term matches.
DINO-Tracker is optimized using both, enjoying the best of both worlds.

3.3 Objective

Given an input video and the correspondences obtained in Sec. 3.2, we train our
model using the following loss terms.

Flow loss. To match our estimated tracks with the motion of the input video, we
apply a flow loss Lflow, which aligns the estimated positions with correspondences
extracted from optical flow

Lflow =
∑

(xi,xj)∈Ωflow

LH(Π(xi, j),xj) + LH(Π(xj , i),xi)

where Ωflow is the set of optical flow correspondences computed during prepro-
cessing, and LH is Huber loss [23].

DINO Best-Buddies Loss. Given a best-buddy pair {pi,pj} ∈Ωdino-bb, we
aim to increase the correlation between their refined features {φφφi,φφφj}, while
decreasing their correlation to other features using a contrastive loss [10]:

l(φφφi,φφφj) = − log
exp(cos-sim(φφφi,φφφj)/τ)∑

p exp(cos-sim(φφφi,Φj(p))/τ)

where τ is a temperature parameter. Our DINO best-buddies loss is:

Ldino-bb =
1

|Ωdino-bb|
∑

(φφφi,φφφj)∈Ωdino-bb

1

2
wij
dino-bb

(
l(φφφi,φφφj) + l(φφφj ,φφφi)

)
where wij

dino-bb weights the loss for the corresponding pair based on a confi-
dence metric of the detected best-buddy pair. The confidence is measured based
on the unimodality of the similarity distribution between the pair of frames and
on the correlation of the feature pair (see more details in Appendix A.2).

8 N. Tumanyan, A. Singer et al.

Refined Best-Buddies Loss. We apply a similar contrastive loss for refined
best-buddies distilled during training {pi,pj} ∈ Ωrfn-bb:

Lrfn-bb =
1

|Ωrfn-bb|
∑

(φφφi,φφφj)∈Ωrfn-bb

1

2
wij
rfn-bb

(
l(φφφi,φφφj) + l(φφφj ,φφφi)

)
where wij

rfn-bb weights the loss for the corresponding pair based on the cosine-
similarity of the features.

Cycle-Consistency Loss. We also found it beneficial to encourage the preser-
vation of cycle-consistent tracks produced by DINO-Tracker. A pair of points
{xi,xj} is considered cycle-consistent if xj = Π

(
xi, j

)
and ||Π(xj , i)−xi||2 ≤ γ,

where γ is a small error threshold. Our cycle-consistency loss is given by:

Lrfn-cc =
∑

(xi,xj)∈Ωrfn-cc

1

2
wij
rfn-cc

(
LH(Π(xi, j),xj) + LH(Π(xj , i),xi)

)
(4)

where Ωrfn-cc are cycle-consistent coordinate pairs extracted during train-
ing, and wij

rfn-cc weights each term according to the cycle-consistency error (see
Appendix A.2 for details).

Prior Preservation Loss. We apply regularization losses to preserve DINO’s
prior in our refined feature space: Specifically, we encourage each refined feature
to: 1. maintain a high cosine similarity, and 2. have a close norm to its cor-
responding DINO feature. Given DINO features ΦDINO(I) and refined features
Φ(I), our prior-preservation loss is defined as:

Lprior =
1

H ′ ·W ′ ·
∑
p

∣∣∣∣1− ||Φ(I)[p]||2
||ΦDINO(I)[p]||2

∣∣∣∣︸ ︷︷ ︸
Lnorm

+ |1− cos-sim (Φ(I)[p],ΦDINO(I)[p])|︸ ︷︷ ︸
Langle

Thus, our final objective is:

L = Lflow + λ1Ldino-bb + λ2Lrfn-bb + λ3Lrfn-cc + λ4Lprior (5)

where λ∗ sets the relative weights between the terms. We use a fixed set of λ∗
in all our experiments. See Appendix A.2 for further implementation details and
Appendix B for complexity details.

3.4 Occlusion Prediction

Given an estimated trajectory Tq, our goal is to determine if the query point
xq is indeed visible at each time t. We do so based on trajectory agreement.
That is, if xq is visible at time t = v, tracking from x̂v ∈ Tq will give rise to the
same trajectory, i.e., Π(xq, k) ≈ Π(x̂v, k) for some frames k. This is illustrated

Taming DINO for Self-Supervised Point Tracking in a Single Video 9

query
visible
occluded

Fig. 3: Visibility via trajectory agreement. To
determine the visibility of xq at time t=o, we
track x̂o across time and check the agreement
between Π(x̂o, t) and Π(x, t). This is done
by measuring dk1 , dk2 – displacements between
the (black and red) tracks for anchor time steps
k1, k2. Since these displacements are large, we
classify xq as occluded for t = o. For t = v,
the track Π(x̂v, t) (green) agrees with Π(x, t),
thus xq is classified as visible for t=v.

by the agreement of the black Tq and the green track in Fig. 3. In contrast, if
at time t = o xq is occluded, tracking from x̂o ∈ Tq will result with a different
trajectory, i.e., ∥Π(xq, k)−Π(x̂o, k)∥ = dk will be large. This is illustrated by
the red trajectory. We measure this trajectory agreement on a few anchor frames
k = k1, k2, . . . as illustrated in the figure. To conclude, x̂t is deemed visible if
dk1

, dk2
, . . . are small and the feature φφφt is similar to φφφq. More technical details

on selecting anchor frames and various thresholds can be found in Appendix A.4.

4 Results

Benchmarks. We evaluate our method on known benchmarks containing anno-
tated trajectories on real videos: (i) TAP-Vid-DAVIS [12], contains 30 object-
centric videos of 34-104 frames, taken from [39]. (ii) TAP-Vid-Kinetics con-
tains 1189 videos of 250 frames each taken from [8], depicting mostly human
activity under both camera and objects’ motion. We use the same set of 100
sampled videos used in [51] for our evaluation. (iii) BADJA [4], contains 9
videos, at 480px resolution, depicting naturally moving animals with ground
truth annotated keypoints.

Metrics. The following metrics are measured for TAP-Vid benchmarks [12]:
– Position accuracy δxavg measures the average position accuracy of visible points:

δxavg = Ex(δ
x), where each δx is the fraction of predicted points within the x

pixels neighborhood of the ground-truth position, where x∈{1, 2, 4, 8, 16}.
– Occlusion Accuracy (OA) measures the fraction of points with correct visibil-

ity prediction.
– Average Jaccard (AJ) jointly measures position and occlusion accuracy.
The following metrics are used for evaluating BADJA:
– δseg measures the accuracy of the tracked keypoint within the distance of

0.2
√
A of the ground-truth annotation, where A is the area of the foreground

object in a frame.
– δ3px measure the accuracy within a threshold of 3px.

10 N. Tumanyan, A. Singer et al.

Table 1: Quantitative comparison. We compare our performance to all the baselines on
TAP-Vid-DAVIS, TAP-Vid-Kinetics [12] and BADJA [4] using the metrics described
in Sec. 4. Methods that do not predict occlusions lack OA and AJ. Our test-time self-
supervised tracker performs on-par with SOTA supervised [13,26], while substantially
outperforming the SOTA test-time training method [51]. Higher is better for all metrics.

Method DAVIS-256 DAVIS-480 Kinetics-256 Kinetics-480 BADJA
δxavg OA AJ δxavg OA AJ δxavg OA AJ δxavg OA AJ δseg δ3px

RAFT [47] 56.7 – – 66.7 – – 50.4 – – 60.5 – – 45.0 5.8
DINOv2 [38] 61.4 – – 64.7 – – 60.3 – – 61.0 – – 62.8 8.4

TAP-Net⋆ [12] 53.4 81.4 38.4 66.4 79.0 46.0 61.7 86.6 48.5 67.1 81.5 47.7 45.4 9.6
PIPs++⋆ [63] 71.5 – – 73.6 – – 68.2 – – 70.8 – – 59.0 9.8
TAPIR⋆ [13] 74.7 89.4 62.8 77.3 89.5 65.7 69.5 89.1 57.3 69.8 86.7 57.5 68.7 10.5

Co-Tracker⋆ [26] 79.2 89.3 65.1 79.4 89.5 65.6 72.9 88.9 59.9 72.8 88.9 59.8 64.0 11.2
Omnimotion† [51] 67.5 85.3 51.7 74.1 84.5 58.4 69.2 89.2 55.0 – – – 45.2 6.9

Ours† 78.2 87.5 62.3 80.4 88.1 64.6 73.3 88.5 59.7 74.3 89.2 60.9 72.4 14.3
⋆ – supervised. † – test-time training.

Baselines. We compare to state-of-the-art supervised feedforward trackers:
PIPs++ [63], TAP-Net [12], TAPIR [13] and Co-Tracker [26], as well as the test-
time optimization tracker Omnimotion [51].

We consider two additional baselines: RAFT [47], in which tracking is per-
formed by chaining optical flow displacements between consecutive frames, and
DINOv2 [38], using nearest neighbor matching between raw DINOv2 features.
Since DINO features are computed at low resolution, the position in RGB space
is obtained using a weighted sum around the nearest neighbor (Eq. 2). See
Appendix A.5 for implementation details. Since Omnimotion requires hours of
training for each video, in Kinetics, we evaluate only on 256-resolution, where
pre-trained weights are available.

4.1 Comparisons

Table 1 reports our performance on TAP-Vid benchmarks (for both 256px and
480px frame resolution) and BADJA (see Appendix A.6 for details of evaluation).
As seen, raw DINOv2 is a surprisingly strong baseline: despite operating on low-
resolution features, it outperforms RAFT, and even outperfroms TAP-Net, which
is trained in a supervised manner for tracking, on DAVIS-256. Moreover, both
RAFT and DINOv2 perform better on higher resolution.

Our method consistently outperforms all baselines on position accuracy (δxavg)
on TAP-Vid, apart from Co-Tracker on DAVIS-256. Generally, all methods per-
form better on higher resolution. In our case, this is expected given the perfor-
mance of raw DINOv2. Notably, compared to Omnimotion, which is the only
test-time optimization competitor, our method exhibit a significant boost in per-
formance across all benchmarks. This makes our method state-of-the-art among
self-supervised baselines, and demonstrate the power of combining test-time
training with external priors. In terms of our occlusion prediction (OA), our

Taming DINO for Self-Supervised Point Tracking in a Single Video 11

TAPIR

Omnimotion

Ours

Query points

Co-Tracker

Omnimotion

Ours

Query points

Query pointsQuery points

Co-Tracker

TAPIR

Ours

TAPIR

Omnimotion

Co-Tracker

TAPIR

Ours

Co-Tracker

Omnimotion

Fig. 4: Qualitative results on TAP-Vid-DAVIS (480) Query points are color-coded
on a reference frame (top). Our method exhibits better association of tracks across
occlusions compared to SOTA trackers. Full videos and additional results are in the
supplementary materials (SM) on our website.

12 N. Tumanyan, A. Singer et al.

Query points

TAPIR

Omnimotion

Ours

Co-Tracker

Query points

Co-Tracker

TAPIR

Omnimotion

Ours

Fig. 5: Sample results on BADJA w.r.t. ground truth. Query points are color-coded
on the frame at the top. Tracked points are marked on the target frames. Red lines
indicate tracking errors w.r.t. the ground truth positions.

performance is on-par with other methods, including supervised methods that
use ground truth visibility labels.

Figure. 4 shows sample qualitative results on DAVIS-480. The objects in
the top two videos are fast moving and are repeatedly occluded. As seen, all
competitors struggle tracking through these occlusions, often tracking points
to visually similar yet semantically unrelated regions (e.g. foreground points
tracked to the background). Our results depict more semantically consistent
trajectories. The bottom videos depict articulated objects and self-occlusion – a
particularly challenging scenario for all methods. Here too, our method tracks
more persistently the foreground objects (e.g., head and upper-body of the man,
woman’s hands).

Our results on BADJA, as seen in Table 1, are state-of-the-art in both δseg

and δ3px metrics. The positional accuracy w.r.t. ground truth is illustrated for
sample examples in Fig. 5.

Tracking across occlusions. As discussed in Sec. 3.2, DINO’s features provide
complementary information to pixel-level optical flow, which allows our method
to reason about correspondences across distant frames. This grants our method
an advantage in tracking across long-term occlusions. To quantify this, we split

Taming DINO for Self-Supervised Point Tracking in a Single Video 13

Fig. 6: Tracking performance by occlusion rate. We group test videos from TAP-Vid
DAVIS into three sets according to occlusion rate (estimated using ground-truth visi-
bility annotations). Positional accuracy and Average Jaccard are reported for each set
separately. While the performance of all methods decreases as the occlusion rate in-
creases, our DINO-Tracker exhibits a smaller gap and outperforms all methods with a
large margin under a high occlusion rate. This demonstrates the benefit of harnessing
the semantic information encoded in DINO’s pre-trained features. Omnimotion [51],
which solely relies on optical flow and video reconstruction, struggles in this case.

TAP-Vid-DAVIS into three sets of videos with an increasing rate of occlusion.
Specifically, for each trajectory, we compute the ratio of the number of occluded
points to the length of the trajectory.

Figure 6 reports the performance of our method and the baselines as a func-
tion of the occlusion rate. As seen, DINO-Tracker performs significantly better
in case of a high occlusion rate due to the prior visual knowledge incorporated
in the framework, enabling it to associate points across long-term occlusions.

4.2 Ablations and Analysis

We quantitatively ablate our key design choices in Table 2. To quantify the
contribution of DINO’s prior, we compare our full framework to a baseline in
which ΦDINO(I) = 0, i.e., we do not use DINO at all and train a CNN feature
extractor from scratch, without Lprior,Ldino-bb losses in Eq. 5. This baseline
relies on appearance-based features only and performs dramatically worse in all
metrics (w/o DINO in Tab. 2).

We further consider a baseline in which our Delta-DINO CNN is replaced by
fine-tuning DINOv2 weights using LoRA [21], using the same objective (Eq. 5).
As seen in Tab. 2, the performance significantly drops. We found that this ap-
proach produces jittery trajectories, and that the heatmaps are less localized.
This is seen in Fig. 7 where we show the predicted tracks and correlation maps
(cost volumes) for a couple representative examples. In contrast, our framework
benefits from the inductive bias of CNN’s as it learns to correlate similar RGB
patches/neighborhoods, while also benefiting from the smoothness of CNN fea-
tures. Another advantage of ours over LoRA is efficiency in memory and time.

In addition, Fig. 7 includes the results of tracking based on raw DINOv2
features. As seen, our optimization refines this initialization, leading to highly-

14 N. Tumanyan, A. Singer et al.

Correlation maps

Correlation maps

DINOv2 (raw) OursQuery point(s) LoRA

Motion trajectories

Motion trajectories

Fig. 7: Comparing DINO-Tracker to (i) raw DINOv2 tracking, (ii) LoRA fine-tuning of
DINOv2 for tracking. For each example, the top row shows color-coded query points and
the corresponding tracks. The second row shows the correlation maps (cost volumes)
between a single query point (marked in yellow) and all features of the target frame.
Raw and LoRA features are not well localized and are ambiguous for semantically
similar objects (e.g., eyes of the fish), yielding imprecise tracks. In contrast, our refined
features are well localized and better resolve ambiguities.

localized heatmaps, even in ambiguous regions (multiple fish eyes, paraglider
body). This is also evident in Fig. 1, where we used t-SNE [32] to visualize raw
DINOv2 features and our refined features along ground-truth tracks. DINOv2
features along trajectories are often “spread out” and are intertwined with fea-
tures from other trajectories. In contrast, our refined features along a trajectory
are distinctly clustered, making tracking more robust and accurate.

Finally, we quantify the contribution of each loss term in our objective (last
rows of Tab. 2). Removing each term results in a drop in tracking performance
and highlights their contribution. Interestingly, w/o Lflow reduces positional ac-
curacy only by 2%. This shows the effectiveness of combining DINO prior with
our self-supervision and feature refinement for accurate tracking.

DINO features are the cornerstone of our framework. But which DINO fea-
tures should we use? Tab. 3 shows track position accuracy for different choices of
DINOv2 ViT-L/14 facets. Using tokens extracted from the 16th layer performs
the best, and we use these DINO features in all experiments.

Taming DINO for Self-Supervised Point Tracking in a Single Video 15

Table 2: Ablation study. Removing one key
component of our method at a time and
reporting performance on TAP-Vid-DAVIS
videos. Lrfn is the combination of the losses
Lrfn-bb and Lrfn-cc.

DAVIS-480
δxavg OA AJ

w/o DINO 71.4 79.7 51.0
LoRA tune 73.2 84.8 58.0
w/o Lprior 79.2 84.8 61.0
w/o Lrfn 79.6 85.4 63.2

w/o Ldino-bb 78.2 87.0 61.9
w/o Lflow 78.3 87.2 62.0

Ours 80.4 88.1 64.6

Table 3: DINO’s feature layer ab-
lation. We evaluate tracking perfor-
mance using DINOv2 ViT-L/14 fea-
tures extracted from different layers
and facets. We report track position ac-
curacy (δxavg) on TAP-Vid-DAVIS 480.
Based on these results we use tokens
extracted from the 16th layer.

layer tokens queries keys values
12th 61.1 51.1 50.0 62.4
16th 64.7 48.8 46.7 63.9
20th 63.8 56.9 56.0 64.0
23rd 59.9 58.5 58.0 60.0

5 Discussion and Conclusions

We presented a new method for dense pixel-level tracking in video which com-
bines test-time training on a single video with the power of external priors of
a pre-trained DINO model. We introduced a new optimization-based frame-
work that harnesses DINO’s internal representation, while adapting it to the
task of point tracking in a self-supervised manner. We demonstrated that our
CNN-based design provides implicit smoothness prior effective for tracking. We
demonstrated that our CNN-based design effectively preserves DINO’s prior and
provides implicit smoothness prior.

Regarding limitations, while our method excels in associating points across
long-term occlusions, we do not model point trajectories behind occluders. Previ-
ous methods achieve this using synthetic data for supervision, or lifting tracking
into 3D. However, a simple interpolation technique such as cubic spline can
give plausible tracks during occlusion (see our SM website for examples). Fur-
thermore, our performance depends on the information encoded in DINO’s pre-
trained features. We observed that in challenging videos for which there is almost
no optical flow supervision and there are multiple semantically-similar objects,
trajectories may jump from one object to another. This is because raw DINO is
mostly dominated by semantic information.

We demonstrated the strengths of our DINO-Tracker through extensive eval-
uation and showed its superiority in associating points across long-term oc-
clusions. We hope that our work will trigger more research in leveraging self-
supervised representation learning for dense tracking in video.

Acknowledgements

We would like to thank Rafail Fridman for his insightful remarks and assistance.
We would also like to thank the authors of Omnimotion for providing the trained

16 N. Tumanyan, A. Singer et al.

weights for TAP-Vid-DAVIS and TAP-Vid-Kinetics videos. The project was sup-
ported by an ERC starting grant OmniVideo (10111768), by Shimon and Golde
Picker, and by the Carolito Stiftung.

Dr. Bagon is a Robin Chemers Neustein AI Fellow. He received funding from
the Israeli Council for Higher Education (CHE) via the Weizmann Data Science
Research Center and MBZUAI-WIS Joint Program for AI Research.

Taming DINO for Self-Supervised Point Tracking in a Single Video 17

References

1. Aflalo, A., Bagon, S., Kashti, T., Eldar, Y.C.: Deepcut: Unsupervised segmentation
using graph neural networks clustering. 2023 IEEE/CVF International Conference
on Computer Vision Workshops (ICCVW) pp. 32–41 (2022) 4

2. Amir, S., Gandelsman, Y., Bagon, S., Dekel, T.: Deep vit features as dense visual
descriptors. ECCVW What is Motion For? (2022) 2, 4, 21, 23

3. Bian, Z., Jabri, A., Efros, A.A., Owens, A.: Learning pixel trajectories with multi-
scale contrastive random walks. In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition. pp. 6508–6519 (2022) 3

4. Biggs, B., Roddick, T., Fitzgibbon, A., Cipolla, R.: Creatures great and SMAL:
Recovering the shape and motion of animals from video. In: ACCV (2018) 9, 10,
23

5. Black, M.J., Anandan, P.: A framework for the robust estimation of optical flow.
1993 (4th) International Conference on Computer Vision pp. 231–236 (1993) 3

6. Bruhn, A., Weickert, J., Schnörr, C.: Lucas/kanade meets horn/schunck: Combin-
ing local and global optic flow methods. International journal of computer vision
61, 211–231 (2005) 3

7. Caron, M., Touvron, H., Misra, I., Jégou, H., Mairal, J., Bojanowski, P., Joulin,
A.: Emerging properties in self-supervised vision transformers. In: Proceedings of
the International Conference on Computer Vision (ICCV) (2021) 3, 4

8. Carreira, J., Zisserman, A.: Quo vadis, action recognition? a new model and the
kinetics dataset. 2017 IEEE Conference on Computer Vision and Pattern Recog-
nition (CVPR) pp. 4724–4733 (2017) 9

9. Chang, J., Wei, D., III, J.W.F.: A video representation using temporal superpixels.
2013 IEEE Conference on Computer Vision and Pattern Recognition pp. 2051–2058
(2013) 4

10. Chen, T., Kornblith, S., Norouzi, M., Hinton, G.: A simple framework for con-
trastive learning of visual representations. arXiv preprint arXiv:2002.05709 (2020)
7

11. Dekel, T., Oron, S., Rubinstein, M., Avidan, S., Freeman, W.T.: Best-buddies sim-
ilarity for robust template matching. 2015 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR) pp. 2021–2029 (2015) 7

12. Doersch, C., Gupta, A., Markeeva, L., Continente, A.R., Smaira, K., Aytar, Y.,
Carreira, J., Zisserman, A., Yang, Y.: Tap-vid: A benchmark for tracking any point
in a video. In: NeurIPS Datasets Track (2022) 2, 3, 6, 9, 10, 23

13. Doersch, C., Yang, Y., Vecerik, M., Gokay, D., Gupta, A., Aytar, Y., Carreira, J.,
Zisserman, A.: Tapir: Tracking any point with per-frame initialization and temporal
refinement. ICCV (2023) 2, 3, 4, 10

14. Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner,
T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.:
An image is worth 16x16 words: Transformers for image recognition at scale. In:
International Conference on Learning Representations (2021) 2

15. Dosovitskiy, A., Fischer, P., Ilg, E., Häusser, P., Hazirbas, C., Golkov, V., van der
Smagt, P., Cremers, D., Brox, T.: Flownet: Learning optical flow with convolutional
networks. 2015 IEEE International Conference on Computer Vision (ICCV) pp.
2758–2766 (2015) 3

16. Felzenszwalb, P.F., Girshick, R.B., McAllester, D., Ramanan, D.: Object detection
with discriminatively trained part-based models. IEEE Transactions on Pattern
Analysis and Machine Intelligence 32(9), 1627–1645 (2010) 21

18 N. Tumanyan, A. Singer et al.

17. Gupta, K., Jampani, V., Esteves, C., Shrivastava, A., Makadia, A., Snavely, N.,
Kar, A.: Asic: Aligning sparse image collections. In: ICCV (2023) 4

18. Hamilton, M., Zhang, Z., Hariharan, B., Snavely, N., Freeman, W.T.: Unsupervised
semantic segmentation by distilling feature correspondences. In: International Con-
ference on Learning Representations (2022) 4

19. Harley, A.W., Fang, Z., Fragkiadaki, K.: Particle video revisited: Tracking through
occlusions using point trajectories. In: ECCV (2022) 3, 4

20. Horn, B.K., Schunck, B.G.: Determining optical flow. Artificial Intelligence 17(1),
185–203 (1981) 3

21. Hu, E.J., Shen, Y., Wallis, P., Allen-Zhu, Z., Li, Y., Wang, S., Wang, L., Chen, W.:
LoRA: Low-rank adaptation of large language models. In: International Conference
on Learning Representations (2022) 13

22. Huang, Z., Shi, X., Zhang, C., Wang, Q., Cheung, K.C., Qin, H., Dai, J., Li, H.:
Flowformer: A transformer architecture for optical flow. ArXiv abs/2203.16194
(2022) 3

23. Huber, P.J.: Robust estimation of a location parameter. Annals of Mathematical
Statistics 35, 492–518 (1964) 7

24. Ilg, E., Mayer, N., Saikia, T., Keuper, M., Dosovitskiy, A., Brox, T.: Flownet 2.0:
Evolution of optical flow estimation with deep networks. 2017 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR) pp. 1647–1655 (2016) 3

25. Jabri, A., Owens, A., Efros, A.A.: Space-time correspondence as a contrastive
random walk. Advances in Neural Information Processing Systems (2020) 3

26. Karaev, N., Rocco, I., Graham, B., Neverova, N., Vedaldi, A., Rupprecht, C.:
CoTracker: It is better to track together (2023) 2, 3, 4, 10

27. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. In: 3rd In-
ternational Conference on Learning Representations, ICLR 2015, San Diego, CA,
USA, May 7-9, 2015, Conference Track Proceedings (2015) 22

28. Li, X., Liu, S., De Mello, S., Wang, X., Kautz, J., Yang, M.H.: Joint-task self-
supervised learning for temporal correspondence. Advances in Neural Information
Processing Systems 32 (2019) 3

29. Liu, C., Yuen, J., Torralba, A.: Sift flow: Dense correspondence across scenes and
its applications. IEEE Transactions on Pattern Analysis and Machine Intelligence
33, 978–994 (2011) 3

30. Lowe, G.: Sift-the scale invariant feature transform. Int. J 2(91-110), 2 (2004) 3
31. Lucas, B.D., Kanade, T.: An iterative image registration technique with an appli-

cation to stereo vision. In: Proceedings of the 7th International Joint Conference
on Artificial Intelligence - Volume 2. p. 674–679. IJCAI’81, Morgan Kaufmann
Publishers Inc. (1981) 3

32. Van der Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine
learning research 9(11) (2008) 14

33. Mangrulkar, S., Gugger, S., Debut, L., Belkada, Y., Paul, S., Bossan, B.: Peft:
State-of-the-art parameter-efficient fine-tuning methods. https://github.com/
huggingface/peft (2022) 23

34. Mariotti, O., Aodha, O.M., Bilen, H.: Improving semantic correspondence with
viewpoint-guided spherical maps (2023) 4

35. Melas-Kyriazi, L., Rupprecht, C., Laina, I., Vedaldi, A.: Deep spectral methods: A
surprisingly strong baseline for unsupervised semantic segmentation and localiza-
tion. 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR) pp. 8354–8365 (2022) 2, 4

https://github.com/huggingface/peft
https://github.com/huggingface/peft

Taming DINO for Self-Supervised Point Tracking in a Single Video 19

36. Neoral, M., Šerých, J., Matas, J.: MFT: Long-term tracking of every pixel. In:
Proceedings of the IEEE/CVF Winter Conference on Applications of Computer
Vision. pp. 6837–6847 (2024) 3

37. Ofri-Amar, D., Geyer, M., Kasten, Y., Dekel, T.: Neural congealing: Aligning im-
ages to a joint semantic atlas. In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR). pp. 19403–19412 (2023) 4

38. Oquab, M., Darcet, T., Moutakanni, T., Vo, H.V., Szafraniec, M., Khalidov, V.,
Fernandez, P., Haziza, D., Massa, F., El-Nouby, A., Howes, R., Huang, P.Y., Xu, H.,
Sharma, V., Li, S.W., Galuba, W., Rabbat, M., Assran, M., Ballas, N., Synnaeve,
G., Misra, I., Jegou, H., Mairal, J., Labatut, P., Joulin, A., Bojanowski, P.: Dinov2:
Learning robust visual features without supervision (2023) 2, 5, 10, 23

39. Pont-Tuset, J., Perazzi, F., Caelles, S., Arbeláez, P., Sorkine-Hornung, A., Van
Gool, L.: The 2017 davis challenge on video object segmentation. arXiv:1704.00675
(2017) 9

40. Rocco, I., Cimpoi, M., Arandjelović, R., Torii, A., Pajdla, T., Sivic, J.: Neighbour-
hood consensus networks. Advances in neural information processing systems 31
(2018) 3

41. Rubinstein, M., Liu, C.: Towards longer long-range motion trajectories. In: British
Machine Vision Conference (2012) 4

42. Salehi, M., Gavves, E., Snoek, C.G.M., Asano, Y.M.: Time does tell: Self-supervised
time-tuning of dense image representations. ICCV (2023) 4

43. Sand, P., Teller, S.J.: Particle video: Long-range motion estimation using point
trajectories. International Journal of Computer Vision 80, 72–91 (2006) 4

44. Shtedritski, A., Vedaldi, A., Rupprecht, C.: Learning universal semantic correspon-
dences with no supervision and automatic data curation. In: Proceedings of the
IEEE/CVF International Conference on Computer Vision (ICCV) Workshops. pp.
933–943 (October 2023) 2, 4

45. Sun, D., Yang, X., Liu, M.Y., Kautz, J.: Pwc-net: Cnns for optical flow using
pyramid, warping, and cost volume. 2018 IEEE/CVF Conference on Computer
Vision and Pattern Recognition pp. 8934–8943 (2017) 3

46. Sun, X., Harley, A.W., Guibas, L.J.: Refining pre-trained motion models (2024) 4
47. Teed, Z., Deng, J.: Raft: Recurrent all-pairs field transforms for optical flow. In:

Vedaldi, A., Bischof, H., Brox, T., Frahm, J.M. (eds.) Computer Vision – ECCV
2020 - 16th European Conference, 2020, Proceedings. pp. 402–419 (2020) 3, 10, 21

48. Tumanyan, N., Bar-Tal, O., Amir, S., Bagon, S., Dekel, T.: Disentangling structure
and appearance in vit feature space. ACM Trans. Graph. (nov 2023) 4

49. Tumanyan, N., Bar-Tal, O., Bagon, S., Dekel, T.: Splicing vit features for semantic
appearance transfer. In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition. pp. 10748–10757 (2022) 4

50. Vondrick, C., Shrivastava, A., Fathi, A., Guadarrama, S., Murphy, K.: Tracking
emerges by colorizing videos. In: Proceedings of the European Conference on Com-
puter Vision (ECCV) (2018) 3

51. Wang, Q., Chang, Y.Y., Cai, R., Li, Z., Hariharan, B., Holynski, A., Snavely,
N.: Tracking everything everywhere all at once. In: International Conference on
Computer Vision (2023) 2, 4, 9, 10, 13

52. Wang, Q., Zhou, X., Hariharan, B., Snavely, N.: Learning feature descriptors using
camera pose supervision. In: Computer Vision–ECCV 2020: 16th European Con-
ference, Glasgow, UK, August 23–28, 2020, Proceedings, Part I 16. pp. 757–774.
Springer (2020) 3

53. Wang, X., Jabri, A., Efros, A.A.: Learning correspondence from the cycle-
consistency of time. In: CVPR (2019) 3

20 N. Tumanyan, A. Singer et al.

54. Xu, H., Zhang, J., Cai, J., Rezatofighi, H., Tao, D.: Gmflow: Learning optical flow
via global matching. 2022 IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR) pp. 8111–8120 (2021) 3

55. Xu, J., Ranftl, R., Koltun, V.: Accurate optical flow via direct cost volume pro-
cessing. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition. pp. 1289–1297 (2017) 3

56. Xu, J., Wang, X.: Rethinking self-supervised correspondence learning: A video
frame-level similarity perspective. In: Proceedings of the IEEE/CVF International
Conference on Computer Vision. pp. 10075–10085 (2021) 3

57. Zhai, M., Xiang, X., Lv, N., Kong, X.: Optical flow and scene flow estimation: A
survey. Pattern Recognition 114, 107861 (2021) 2

58. Zhang, J., Herrmann, C., Hur, J., Cabrera, L.P., Jampani, V., Sun, D., Yang, M.H.:
A tale of two features: Stable diffusion complements dino for zero-shot semantic
correspondence (2023) 4

59. Zhang, J., Herrmann, C., Hur, J., Chen, E., Jampani, V., Sun, D., Yang, M.H.:
Telling left from right: Identifying geometry-aware semantic correspondence (2023)
4

60. Zhang, L., Rao, A., Agrawala, M.: Adding conditional control to text-to-image
diffusion models (2023) 5

61. Zhang, R.: Making convolutional networks shift-invariant again. In: ICML (2019)
23

62. Zhao, W., Liu, S., Guo, H., Wang, W., Liu, Y.: Particlesfm: Exploiting dense point
trajectories for localizing moving cameras in the wild. In: European Conference on
Computer Vision (2022) 4

63. Zheng, Y., Harley, A.W., Shen, B., Wetzstein, G., Guibas, L.J.: Pointodyssey: A
large-scale synthetic dataset for long-term point tracking. In: ICCV (2023) 2, 3, 4,
10

64. Zhou, T., Krahenbuhl, P., Aubry, M., Huang, Q., Efros, A.A.: Learning dense corre-
spondence via 3d-guided cycle consistency. In: Proceedings of the IEEE conference
on computer vision and pattern recognition. pp. 117–126 (2016) 3

Taming DINO for Self-Supervised Point Tracking in a Single Video 21

A Implementation Details

A.1 Preprocessing

Optical flow. As discussed in Sec. 3.2, our method chains RAFT optical flow [47]
between consecutive frames, forming short-term accurate tracks for supervision.
Specifically, for a given point xi in frame Ii, we generate a tracklet {xj =
xj−1 + fj−1→j(x

j−1); j ∈ {i + 1, ..., t}}, where fj−1→j is the optical flow be-
tween frames Ij−1 and Ij . We terminate the track at a frame t if ||xt − (xt+1 +
ft+1→t(x

t+1))|| ≥ γof, where γof = 1.5px is a cycle-consistency threshold. To
avoid drift error, we apply cycle-consistency checks on optical flow between dis-
tant frames. That is, we filter-out correspondences xj that are inconsistent with
fi→j , i.e. if ||xj−xi→j ||2 ≥ γof-lng and ||xi−(xi→j+ fj→i(x

i→j))||2 ≤ γof, where
xi→j = xi+ fi→j(x

i), γof-lng = 2px, and the second condition ensures that xi→j

is reliable. For each frame Ii, we initialize new tracklets for points that do not
have correspondences. The set of all correspondences processed from the optical
flow is denoted as Ωflow = {(xi,xj)}. In all our losses, continuous coordinates
are being normalized to [−1, 1].

DINO feature correspondences. Since the coarse feature correspondence su-
pervision complements the sub-pixel optical flow supervision, we discard fea-
ture correspondences for which optical flow supervision is available: Ωdino-bb =
{(pi,pj) DINO best-buddy : (xi,xj) /∈ Ωflow}. In Fig. 8, we visualize DINO
best-buddy pairs extracted between distant frames. As seen, DINO best-buddies
provides localized, semantic correspondences across multiple occlusions.

A.2 Training details

Minibatch sampling. For memory efficiency, we sample correspondences from a
set of 8 frames in each training batch. We sample 512 pairs of optical flow corre-
spondences, at most 1024 pairs of best-buddy features (for Ldino-bb and Lrfn-bb
separately), and at most 1024 cycle-consistent correspondences. The best-buddy
and cycle-consistent correspondences are sampled between 4 pairs of frames. For
balanced training, we ensure that 50% of the optical flow correspondences and
70% of feature and cycle-consistent correspondences lie in the foreground. We
use saliency maps of DINOv2 features [2] for detecting the foreground when
ground-truth masks are not available.

Contrastive loss weighting. As discussed in Sec. 3.3 of the paper, each best-
buddy term in Ldino-bb is weighted with a confidence score. For a given pair
{φφφi

DINO,φφφ
j
DINO}, we measure the confidence score based on 2 metrics: (i) the uni-

modality of the correlations {S(p) = cos-sim(φφφi
DINO,Φ

j(p)) : p ∈ H ′ ×W ′}, (ii)
the correlation of the pair sij = S(pj). To measure (i), we compute the ratio
rij = s2/s1, where s1 > s2 are the 2 highest correlations in S. To detect them,
we apply non-maximum suppression (NMS) [16] on the similarity map S with
an IoU threshold of 0.2, where we use a box size of 60px for each position. s1 and

22 N. Tumanyan, A. Singer et al.

Fig. 8: DINO best-buddies. We visualize best-buddy pairs between distant frames.
DINO best-buddies provide localized semantic correspondences, allowing the model
to recover the object past repeating occlusions.

s2 are, therefore, the top 2 similarities proposed by NMS. Thus, our confidence
score is given by wij

dino-bb = σ(a · (1 −max(rij , rji)) − b) · 2(sij)3, where σ(·) is
the sigmoid function. We fix a = 27, b = −5.7 in all our experiments.

For each best-buddy pair {pi,pj} in Lrfn-bb, we weight the term based on the
correlation between the features: wij

rfn-bb = 2(sij)3, where sij = cos-sim(φφφi,φφφj).

Cycle-consistency loss. In Lrfn-cc (Eq. 4), for each cycle-consistent pair {xi,xj},
we weight the loss term by the cycle-consistency error. Specifically, in Eq. 4, we
set wij

rfn-cc = 0.8ecyc , where ecyc = ||xi −Π(xj , i)||2.

Hyperparameters. We train our model using Adam optimizer [27], with a learning
rate of 0.01 for all parameters. We decrease the learning rate of the CNN-refiner
(Fig. 2) by a factor of 0.999 every 40 step. For videos of up to 100 frames, the
model is trained for 10K iterations. On Kinetics, which contains longer videos
(250 frames), we train for 20k iterations. We apply the losses Lrfn-bb and Lrfn-cc
after 5k training iterations. The radius R in Eq. 2 is set to 35px. In Lrfn-bb and
Ldino-bb, we set the temperature τ = 0.1. In Lrfn-cc, we use an error threshold
γ = 4. In all our experiments, we use the following weighting in Eq. 5: λ1 =
25× 10−5, λ2 = 5× 10−5, λ3 = 0.5, λ4 = 1× 10−4.

A.3 Architecture

Delta-DINO is a fully convolutional neural network. It comprises 4 layers with
channel dimensions of [3 → 64 → 128 → 256 → 1024]. All layers comprise

Taming DINO for Self-Supervised Point Tracking in a Single Video 23

Conv2d → BatchNorm2d → ReLU → BlurPool, except for the last layer, which
comprises Conv2d → BatchNorm2d. For BlurPool, we use the antialiased down-
sampling layers from [61]. All convolutional layers have kernel size 5, stride of 1,
and reflection padding of 2, except the last layer has reflection padding of 4 and
a dilation of 2. To align the residual features with DINO features, we grid-sample
from the output of Delta-DINO at the DINO patch-center positions.

CNN-Refiner [12] comprises of Conv2d → ReLU → Conv2d with channels [1 →
16 → 1], kernel size 3, and padding 1.

Our model has ∼7.6M trainable parameters: ∼7.59M for Delta-DINO, ∼300
for CNN-Refiner. We use DINOv2-ViTL/14 [38] as the DINO backbone in all
our experiments. To increase the resolution of DINO features, we modify the
stride of the embedding projection layer from 14 to 7 [2].

A.4 Occlusion Prediction

We select the anchor frames {ki} based on high cos-similarity between query
and tracked features: {ki : cos-sim(φφφki ,φφφq) ≥ 0.7}. To predict occlusion from
trajectory agreement, we calculate an agreement threshold for the trajectory
Tq: for each anchor frame k, we sample the median disagreement w.r.t. other
anchor frames: ek = medki

(||Π(x̂k, ki) − x̂ki ||2), and take the maximum of the
median errors as the threshold for Tq: eq = maxk(ek). A tracked point x̂t is
predicted as visible if med(dk) ≤ eq ∧ cos-sim(φφφt,φφφq) ≥ γocc, where dk =
||Π(xq, k)−Π(x̂t, k)||2, and γocc = 0.6 in all experiments.

A.5 Ablation Details

LoRA tuning. We use the PEFT implementation [33] for LoRA. We fine-tune
the queries, keys, and values of layers-{15, 16} of DINOv2 since we use layer-
16 in our tracker (see Tab. 3). We set lora_alpha=0.5, lora_dropout=0.1,
rank=8 when fine-tuning with PEFT.

Raw DINOv2 tracking. To track with raw DINOv2 features (see Sec. 4 of the
paper), we use the tracking algorithm described in Sec. 3.1 and Eq. 2, while
setting Φ∆(I) = 0 and H = S (i.e. without Delta-DINO and CNN-Refiner).

A.6 Benchmarks Evaluation

On the TAP-Vid benchmark we evaluate all methods using "query-strided" sam-
pling, where points on the annotated tracks are sampled as query every five
frames [12]. All metrics on the TAP-Vid benchmark are computed in 256x256
resolution. BADJA [4] provides key-point position and visibility labels every 3-5
frames. For evaluation, points are sampled once, at their first visible frame. For
the dotted visualizations shown in Fig. 4 and the SM, we track a dense grid of
points on the query frame, and visualize only tracks that lie on the foreground.

24 N. Tumanyan, A. Singer et al.

We follow PIPs++ and Co-Tracker’s evaluation protocol, and resize frames
to their training resolution of 384x512 and 512x896 respectively, before infer-
ence. We provide Co-Tracker’s query points a support of 6 global and 6 local
grid points. TAP-IR and TAP-Net are evaluated at the provided input reso-
lution. For the RAFT baseline, we found that upsamling frames from 256 ×
256 improves performance on the TAP-Vid-DAVIS-256 and TAP-Vid-Kinetics-
256 benchmarks, and we resize downsampled frames to 480x854 before inference.
We used Omnimotion’s published code to train models for the TAP-Vid-DAVIS-
480 and BADJA benchmarks, pre-trained weights were provided for TAP-Vid-
DAVIS-256 and TAP-Vid-Kinetics-256.

B Complexity

B.1 Training time.

Fitting DINO-Tracker to a single video with 100 frames takes about 1.6 hours
(less than a second per iteration) on a single A100 GPU. Our training time is
×10 faster than Omnimotion for the same video. Training LoRA-tune baseline
(see Sec. 4.2) with the same settings takes almost 9 hours per video (about 1.5
sec/iteration). This is ×6 slower than our CNN-based refiner network.

To improve training efficiency, we show that DINO-Tracker can be trained
only on a subset of the frames, while still evaluating on all frames during in-
ference. Tab. 4 reports our performance when training only 50% or 25% of the
frames, thus reducing the training time by the same factor. As seen, our method
maintains its performance when trained on 50% and is competitive when trained
on 25% of the frames. This demonstrates the ability of our tracker to generalize
to unseen frames and suggest it can be extended efficiently to longer videos.

Table 4: Generalization when training on every 2nd and every 4th frame in each video
(TAP-Vid-DAVIS-480) on a single A100.

δxavg AJ OA train time
Ours 80.7 65.3 88.5 90 min.

Ours, every 2nd frame 80.6 65.7 88.5 45 min.
Ours, every 4th frame 79.1 64.0 87.2 22.5 min.

Taming DINO for Self-Supervised Point Tracking in a Single Video 25

Table 5: DAVIS-480 inference time and memory on a single A100.

Co-Tracker TAPIR PIPS++ Ours Ours
(full) (full) (pos. only) (pos. only) (full)

Time (sec) 345.8 110.4 8.6 4.3 80.5
GPU-Mem (GB) 19.2 60.0 12.0 15.2 52.6

B.2 Runtime and Memory

We measure the required compute for full inference (both position and visibility)
of DINO-Tracker and feed-forward competitors. Tab. 5 reports average runtime
and allocated memory on TAP-Vid-DAVIS-480 on a single A100 for our tracker
and feed-forward methods. Most of our runtime is used for visibility prediction,
yet once trained, our total inference time is fastest (note that PIPS++ cannot
predict visibility) and is less memory-consuming than TAPIR.

	DINO-Tracker: Taming DINO for Self-Supervised Point Tracking in a Single Video

